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Abstract 

* 

Syntactic formats oí SOS specifications as a criterion to obtain compositional semantics have 
widely been investigated. almost alwa.ys in the interleaving setting. 

In this p<tper. we stucly t he case of truly concurren t. semantics. \Y e show how to derive Asyn
chronous Transition Systems ,,·ith invisible actions from SOS specifica.tions. and we exhibit sirnple 
syntactic conditions over the specifications to get compositionality for (rooted) ST-semantics. Clas
sical process description languages like ces fit the conditions. 

1 Introduction 

SOS specifications techniques [Plo81] is a general methocl to define process clescription languages, 
e.g. CCS [JVIil89]. It naturally induces operational semantics for the language. Sin ce this last clecade, 
¡¡·e observe considerable progresses in this fielcl. In particular, strong results relate syntactic aspects of 
the specifications. as rules formats. with semantic properties of the underlying models [Sim8.5], [BIM88], 
[GV89] (see also [GY92]). [Gro89] (see also [Gro9:3]), [Gla93], [Blo9.5]. Results of this kind are powerful 
since using a particular format for clefining your favorite language ensures semantic properties. Basically, 
al! the results show that we get compositional semantics for free. 

All the preúously mentionecl \\·orks only apply to non-deterministic sequential aspects of concurrent 
programs. This not surprising sine e SOS specifications naturally define Transition Systems. However, 
compositionality results haw been established for non-interleaving moclels. but they al! focus on a par
ticular language. Since then [BD!J2] went aheacl by giving a way to '·reacl .. true concurrent semantics 
in any specifications provicled they fulfill syntactic conclitions. [BD92] shmved how to derive a trace 
automata [Sta89] from an SOS specification (Trace automata are Transition Systems enriched with an 
inclependence relation o\·er transitions). But no semantic equivalence was considered. 

Among the truly concmTc::nt ec¡ui valen ce. one of the most relevant is ST- bisim ulaiion equivalen ce 
[GV87] : it cloes not reduce actions to atomic ones, ancl by expressing an elementary form of duration 
(each action has a bEginning andan encling). it constitutes the right notion of behavior compatible with 
the refinement of actzons, see [Gla90] but also [Vog91]. The main notion in ST-bisimulation is the one of 
ST-states: an ST-state represents the state of the process when concurrent activities are executing. 

In this paper. we adclress the following question : is it possible to determine:: syntactic criterions over 
SOS specifications in orcler to get a compositional ST-bisimulation semantics? 

We partially ans¡¡·ered t he c¡uestion in [EHP95]. Strongly inspired from [BD92], we have shown how 
Asynchronous Transition Systems ( of [Shi8.5] and [Bed87]) underlay SOS specifications for languages 
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with no invisible actions. Transit.ion offer a very easy wa.y to define ST-states as 
well as ST-bisimulation. The maiu contribution of is the cletermination of a 
condition over the a.xioms of the in order to semantic 
for ST-bisimula.tion, but also for other truly concurrent bisimulations. 

In this pa.per, we fully answer the question. N a.mely, we consicler SOS conta.ining in-
visible actions. In this framevvork, the approach of [BD92] has to be extended to dea.l with 
rule concerning non observable actions. in order to built an adequa.te Asynchronous Transition System. 
The conditions over SOS specifica.tions regarding weak ST-bisimulation has to be closely related to the 
conditions proposed in [Blo95] for weak bisinmlation ancl bra.nching bisimulation for non--interleaving 
models.\Ve show that specifica.tions clescribing so-ca.llecl tame combinators ha.ve compositional weak ST
bisimulation semantics. 
Existing operators su eh as the cleterministic choice of CCS ( and many others) do not behave properly 
with weak bisimulations, but cloes with rootecl ones. To cope with these combin.ators, we exhibit. syntactic 
conclitions ( clelivering tamable combinators) to get cornpositiona.liLy for roo te el wea.k ST-bisimulation. 

The paper is organisecl as follows: Section 2 introduces the semantic framework, namely ,L'~synchronous 
Tra.nsition Systems, ST-states, ST-bisinmlation and its rootecl variant. Section 3 is clevoted to the 
construction of the Asynchronous Transition System, illustra.tecl with an extension of CCS language. 
Finally in Section 4, vve show the congruence theorem for weak ST-bisimulation (resp. rooted weak ST
bisimula.tion) with respect to all tamc (resp. t.ama.ble) combinators. VVe ene! up by concluding remarks 
a.nd future works. 

Truly 
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rnea.ns of re~ources events te be lJ nderstoocl a.s tasks. 'T\'~70 a. re rf 
do not share the ~ame resources. :Now thc Unce properties in Definition 1 can be 

understoocl. As events are tasks. it is then very natural to ask for a cleterministic moclel. The forwa.rcl sta
bility property expresses that if two inclependent tasks, na.mely a and b, can be performed, the execution 
of one them woulcl not clisturb thc possibility of executing the other one, since they do not sha.re the sa.me 
resource. The commutativity propcrty tells that if a task b can be perforrnecl after the execution of a ta.sk 
a inclependent with b, then the resomcc neecled for b were alreacly avaible before starting a otherwise a 

woulcl have producecl the resource neeclecl for b, which is not vvhat we intencl by being inclepenclent. So b 
could ha. ve becn performecl before a ancl for the .same reasons, a can still be executed after b. I\1oreover, 
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Figure 1: An example of an ATS. with a lb 

in both case of forwarcl stability ancl commutativity. the state of the system after the execution of the 
two tasks (in any orcler) is unique. 

In graphical representations. the inclepenclence relation is representecl aside. Transitions between 
states are clrawn using labellecl arro\\·s. ""e !abe! of the form a: o means that the transition gives rise to 
event a with l(a) = n. Figure 1 is an example of an ATS with 6 states where E= {u.b.c,d} and alb. 

VVith moclels like ATS'. states representing ongoing activities of the system can be clerivecl. Consider 
for example the leftmost ""kTS of Figure '2. The clashecl area, or smface. precisely denotes simultaneous 
activity of indepenclent tasks o ancl b. This can also be applied to more than two tasks, leacling to higher 
dimensional surfaces. \Vith tluee tasks. one woulcl clraw a cube, with 4 or more of them, one would 
not clraw aúything. At some point in the paper. we use this geometrical intuition for ST-states'. The 
definition below is strongly inspirecl from [Ech93]. 

Definition 2 ( ST-states) Lti G = (S', E. I. --;., !) E ATS. An ST-state of G is a couple ( s, { ej }j El) E 
S x P(E). where 

1. for a!lj E J. l(ej) :j: T. 

2. foral! j E J, ii ~. 

S. foral/ k, 1 E .J./.; :j: l. t¡.lc¡. Then. al! the e1 's are distinct. 

From note on, (s, {c 1 }JEJ) tul! In UTtiftn s + LJ Ej to em.phasz::e that we not zwy atitntlon to any arder 

between uents ej. Wrdznc¡ s + L.r EJ te//! nnplíczt!y guarantee Properties l. 2 and :3 of Definition 2. A 
ST-state of the form s + LJ ~'; ls sal(/ to start from state s ,· s is also cal!ul thc source of the ST-state. 

!Ve cal! the climension of thc ST-statc s + LJ Ej the cardinal of set J. 
lile wnte ST(G) for the sti ofST-statcs ofG. 

Exam.ple 1 In the lcftmost ATS ofFigure :!. s+a+b is an ST-state 1cith dnnenszon 2. whereas s 1 +b+c 
is not (de]~·nerl) as b ande are not lndependent. 

Notice that any state s is a particular ST-state with climension O, starting from s where no event is 
executing. A transition s __:_ s' is also an ST-state, namely s +e. with climension l. In the following, 
primitive ST-states are those with climension O or l. 

In ATS', only primitive ST-states are representecl. However. thanks to the inclepenclence, we get a 
\vay to combine primitive ST-states in orcler to get higher dimensional ones. 

202 ST-bisirnulation and rooted ST-bisimulation 

The kincl of behavior unclerlying ST-bisimulation equivalence is basecl on the notion of ongoing actívity 
of proces.ses : the existence of an ST-bisimulation equivalence bctween t\YO proce:sses i.e. ATS in om 
framework, is simply define el as a classical bisimulation bu t. not only bet \1 e en primitiYe ST-st;3 tes 
climension O ancl 1), as classical bisimulations clo, but a.lso between any possible ST-states of t.he sys!.em. 
Adclitionally, the ST-bisimulation relation has to be enrichecl : insteacl of defining couplcs in thfo rela1.íon 
we consicler triples where the first t\yo components are ( ec¡uivalent) ST-state~ ancl the thircl 



a mapping which a link bet-vveen ongoing actions of these ST-stac as it is necessary in the presence of 
auto-concnrrency, i.e. concurrent events with same labels. to relate every of 
each action with its corresponcling beginning. From a geometrical point of vievv, the mapping is defined 
between the sets of eclges of each object, which can be COJElstently extended as the ST-sta.tes grow. 

Originally, ST-bisimulation was proposecl over Petri nets [GYS7] and over Event Structures [Gla90]. 
Its definition in ATS', as proposecl here, clefinitely improws its simplicity, mostly because there 1s no 
need here, comparing to previous approaches, to take into account the past of the computation. 

Definition 3 (ST-bisimulation) 
Let G = (5, E, I, ~, /) be an ATS. 

A relation R s;; ST(G) x ST(G) x P(E ><E) is an ST-bisimulation of G, ifJ 

1. if(s+LJoJ,r+LKb¡,h)E'R. thcn 

(a) h: {oj}jEJ ~ {b~:hu: has to be a label-presening bijfction, i.e. l(h(a)) = l(cr). 

(b) ( 7' + LK b~;, s + LJ aj. h- 1 ) E R. wh ue h- 1 ls t he m1 e rse functum of h. 

"1. 2. Tn. 

(a) ifs+ LJ Gj +a E ST(()G) then e:rists a path ulih O or more T, T "_:!e~··· e_:.T T 1, S?lch that 

Vi= 1 ... m, j E J. ( ei Ibj ), 1" + LK b~.; + b E ST( ( )G) and (s + LJ Clj +a, T 1 + LK b~.; + b, hU 
{(a,b)})ER, 

(b) for al! k E J, let s', r' E S respectwely be s. t. a n s "k s' 

(s' + LJ\{k} Clj, 7' 1 + Lh\{h(a)} Ók, hl¡n1}1EJ\{ac}) E R. 

h( Ci k) 
and r ~ r', then it is the case lhat 

(e) if s ~ s', rwcl 'Vj E J. ) thtn c.rzsis a path u.·zth O or more T, T 
e Jn :T 

----r r', su eh 
'/ t w. 1 . E J ( i JI i 1 ( . .1 + "" · J + "" /1 1 ) E ·v ¡. ¡a v z = ... 1n, J . . e J J 1 a n r , s L.., J u 1 . 1 L..,¡,· . k, .1. ,.,e . 

Por alls, 7' E 5, we wnte 'R.: s =sr r whencucrR zs an ST-Insnnulation ofG and (s, r, 0) E and we 

c:riend this notatwn to n-luples (S¡ J ••• ' s,) ((71 d (rl' .. '1'¡¡) of sn by ¡cnting R : (S¡' .. 'Sn) =.s'T (rl' ... '~'n) 
(or s=s'T i;') whent1!fT R: Sj =sr Tj for u/1 j = 1, .... ll. lFe wniE S =sT .,. whencver ihere ex'lsts R s.t. 

R.:s=s'T~'· 

The clefinition ahove has to be red as follows Clauses 1 is clear. Clauses 2a is the classical transfer 
property of hisimulation for growing or in other worcls when the beginning of an action is 
observecl. Similarly Clause 2b corresponcl toan cnding phase. 

Note that when no concurrency is considered weak ST-bisimulation corrcsponds to de/ay bisimulation 

, [Wal88]. 

Definition 4 ST- Jre say that iwo states s and r are rooted ST-bzsimilar 

(s =rsT r) zfj for a/l s "P s' lhrre c:cists a path r '2 t" T 

mee versa.. 

E rn T 

Rootccl ST-bisimulation should be callee! ''interleavin¡.( rooted ST-bisimulation, because The first 
rnove consists of an interleaving rootecl delta step before considcring classical ST moves. 

Consider Examples given in 2. 

'trsT 

aib 
=sT 
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Remark 1 Classícally. note that íf'R1 and 'R.2 are two (rooted) ST-bísímulatíons of G so ís 'R 1 U R2, 

and conseq1tently, there eúsis a greatest (rooted) ST-bisimnlatíon of G. Moreover, thís (rooted) ST
bísimulation of G, when projected onto its first two components is an equivalen ce relation o ver S, the set 
of states. 

3 SOS-specifications of Asynchronous Transition Systems 

In the sequel, we a.ssume given a set V = {u. v, u1 , v1 , ... } of variables. 

Defiuitiou 5 Let I; = (F. ari) be a single sorted signature, where F is a set of function na.mes (or 
combina.tors) different from V and arí: F- N gives the aríty of the combinators. 

A term on the signat1tre ~. or simply a ~-term, is a labelled tree over ~. i.e. a partía! functíon 
t :(N+)* ~:B. We write T~ for the set of closed terms ouer I;, that is I:-terms containing no variables. 

In the following, if I; = (F. ari) is a. signature, we write simply "f E I;"" instea.d of "f E F a.nd 
arí(f) = n", and "f E ~" if f E ~" for some natural n. 

3.1 Basic SOS specifications 

Definitiou 6 Given a set of a ct io ns Act = {a, ¡'3 .. . } and Act7 = Act U { r}. with typícal elements 
fl., 17 .... A Basic Struct.ural Operationa.l Sema.ntics specifica.tion ( or specífication for short) ís a structure 
P = (I:, R) where I: = (F, arí) is a signature and R is a set of rules s.t. for allr E R. 1' has the form 

(1) 

where u;, u; are distinct variables. u¡= r¡ ifji tf. {i1, ... im}, fl.,Jl·i E Act7 , f,g E ::;n, 

E . ¡¡, ( 1' • xpresswns u; 1 - v;1 are the premises of rule r and f u1 .. . un)~ g(v1 ... u,) its conclusion. 

• Combinator f in the conclusion of the rule will be called the source combinator of 1', and g the 
ta.rget combina tor. 

Notice that as long as ftco combinators occur in the same conclusion of a basic SOS rule, then 
aTi(f) = m·i(g). 

• A rule 1' ís an a.xiom if it has no prenuses. 

Defiuitiou 7 (Basic defiuitions aud properties m SOS specificatious) Let P be a basic SOS 

specification. 

• An axíom is said to be reflexive if the source and the target combínators are identical. 
A specification P is irreflexive whenenr none of íts axíoms are reflexive. 

• Given a specification P. thr: patience rule for position i in f is the (possible derived) rule 

T 

u; -+ r; 

j(u1 .... u;, .. . u,)~ f(ul, ... v;, .. . u,) 

• A combinator f is cool in P (n. b. we follow the Bloom 's termínology) whenever 

1. no rule for f contains prunises mentioning r '.s, except the patienct rules required by the pre

víous clause. 

2. foral! rule 1' with so urce combinator f, and each premíses u.; ~.u¡ of r, there exists in P a 

patience rule for position i in f. 739 



Although the format of the rules seems very are 8Xpre<3SlVe to 
encode for instance al! the cc:s c:ornbinators as noticecl [BD92] : we extencl the of CCS with 
id (the identity c:ombinator), 1r1 ancl íT:J (projections). Example 2 shows a subset of CCS rules (without 
the rules for restriction ancl renaming). 
We also introduce another combinator, here ca.lled angelzc choice, el ose] y rdatecl to [BHR84]. This 
combinator will be usecl to illustrate particular results of the paper. Intuitively, the angelic choice chooses 
between tvvo processes, like combinator + of ces does, but only whell a visible action is performecl by 
one of two components. 
Classically, for combinators like +. 1. EB we use infixed notations, whereas for less classical ones we use 
prefixed notations, e.g. Jr1 , if2, ... 

Exmnple 2 Additionally to the set of combinators occurring in the rules below, we adcl a combinator 
with arity O classically named ni/ to denote the process that cloes nothing. 

¡t.p ~ id(p) 

p ~ j/ 
1' 

p + 1] ~ ifl (p'' lj) 
1' 

P--+ z/ 
1' 

Jr¡(p, q) - if¡ (p'' q) 
]! _!'e_ p' 

1' 
P lq- P' 1 '1 

]J ...2.. p' q ...2.. q' 
( r¡) T 

]J 1 1] --+ p' 1 q' 

r¡ _!:_,_ r¡' 

1' p-p 

id(p) _!'e_ id(p) 
1] _!'e_ q' 

p + r¡ _!'e_ if2(]!, q') 

!f _!'e_ q' 

1 
1' 1 p q --+ p q' 

T ) p tt lj _!:_,_ p EB q' 
P ~ z/ 

(rEEJJ 
p p q ...2.. p' 

The .specincation above provicles us with an irrcfiexive basic SOS- specification. Language CCS is 
defined when we remove the rules for the angdic choice. Notice that combinator + is not cool since there 
is no rule for the first argument, nor for tl1e seconcl one. This is not the case for El? thanks to 
rules (1·EB~ )ancl (rtt>; ). In rules (r·.;d), (7'rr 1 ), (1'rr 2 ), (r·¡ 1 ancl (r¡ 2 ) when instantiating p as T gives the thc 
patience rules for the corresponcling combinator. 
VVe shall see in Section 4 that coolness hypothesis is necessary regarding congruence propertics for ST
bisimulation. 

Co proofs in transitions 

For the construction of an ATS clerivecl from the specification, we follow [BD92] : the idea is to keep track 
in the label in the rules' conclusion of informations about that rule. This information (called schematic 
rule in [BD92]) cnables us to define event-labelecl transitions : the events are sirnply trees/terms of 
schematic rules. These terms (callee! schcmaiíc proofs in [BD92]) are clerivecl from the proof trees of the 
transitions in which the rules are replacecl by their schematic rule. 
Transitions have the form p" ll p' where a i.s a sc:hematic proof ancl f1 E 

In this paper, we use a fairly ha.ndful convention to vvrite schematic rules. Before alL and for technical 
reasons, we introduce a new symbol t to denote icllencss of processes. t will be the label of iclle step. 
N ow, if T is a rule of the form 

its schematic rule will be written g2 1 ' 72 r¡, where p. is precisely the label of the conclusion, ami 7]i is the 

label of the prcrnise :e, Yi if it exists, t otherwise. 
However, schematic rules of patience rules as vvell as patience rules obtainecl from general rules (like the 
patience rule we obtain from (7'11) of ces when Jl = r) are codee! clifferently : consíder a patience rule 

a.t position i in /, then its schematic rule will IJe written pat''rilf),i. Notice that the target combinator 
(equal to fas well) cloes not appear. 
ln the following, we use Greek letters ¡;, cr, . . t.o denote schematic rules. 
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From t his point in the paper. we pro pose a ne\Y presentation of the specification, \\·here the schematic 
proofs are incluctively representecl in the rules themselves. The rcacler has to be persuaclecl that the 
specification we obtain is fully eqnivalent to the original one. 

Let. r be a rule which is not a patience rule. with schematic rule p ancl of t.he fonn 

f 1 rm 
u,im .........--:. ·c¡m 

f( t11. U e .... Un) .!!__ g(vl, u2 ... , vn) 

will be codee! 
,_1¡1 :¡L rl a¡m :p¡ m 

U¡l l.'i1 U?~m ---+ Vim 

t.( ) p(c 1 .... e,):~< ) 
. u1. u'.! . ... Un - g(v1, u2 ... , Vn 

where e¡ = é whenever i r{c { i 1 , . } . .\ otice that in case r is an axiom, e; = é for al! i. 

The following example shows how Example 2 will henceforth be written. 

Example 3 

id~¡ (:: ):¡t 

fl.j! - id(p) 

]J a ex p' 

id'•(a):cx 
id(p) "__,. id(p') 

p a:r p' 
(pat;d) patl, 1 

id(p) icl(p') 

(l:¡..t 1 
p-p q ""'' q' 

7fil-~ ((l. t): f.-l -1 

p + q - 711 (p . q) 
1r;~: (c:,a):r 

p+q ---; 712(p.q') 
p a:o p' q a:o: q' 

( 7' 7rl ) 7r{'-"r:aJ):a 
71l{p,q) ···- 71l{p'.r¡) 

( r.,~) 

a:; 1 
p-p 

pat.:!, 1 ( a. t ):; 
711(p,q) - 71:(]/,r¡) 

(pat,,) 

P~ z/ 
a:o 1 b:O 1 

p- p !J -q q ""'' q' 
(rl,) 1:;' (a, e) o: 

]J 1 q . :.__, p' 1 q 
( l'[) 1 c. a i a ) ~ 

p 1 q r . . ' p' 1 r/ p Ir¡ 1:.:·1 i.cl) cr ]J l q' 

!j 'l:T ljl JI a T j/ 
(pat1,) pat 0 • 1 (a,c):T 

P Ir¡ ___,. ¡/ 1 r¡ ]J l q pat 0 ~,a) T ]J l q' 

a:; 1 p-p 
(patt?o) 

pEBq p EB q' 
pntJ· 1 (a.t :r:; 

p 'l lj - p' 4 q 
n:n 1 

p-p 
-.::-~:" ( '..l ,( ):0 

p!±;q ¡/ 

Apart from the way we treat pa tience rules, the cocling we pro pose is a (hopefully) comfortable encocling 
of the proposal in [BD92]. From now on. \\·e consicler SOS specifications vvith this new coding. 

The use of schematic rules makes lo ose information about the set of rules: we abstract from the source 
combinator of the rule. Following [BD92]. the information can be completed in a clirected graph where 

"' combinators are vertices. ancl 

, (' . f l f' fp(a, .. cln!:¡l 
@ arrows .f -- -> g representmg each rule \Yith conclusion o t 1e orn1. - g. 

741 
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ij j - _P_> [)¡ rtnd f -- -> !12 ihen !he-re e:risl Y:o cd. g¡ 
(' cr 

-- -> }:J and !1'2 -- -> g;;. 

I'Iotice that in the seconcl point of Definition S, because of 1 we havc either g;; = 91 = g2 ((a) 
or (b) not to , either (e) por() is a patience say p, ancl !t must be the case that g1 = f and 

[)2 = 93 #f. 
3 ShOVVS t. he SÍ tuation for CCS combinatOl'S CY., 

the angelic choice. Situation (a) happens for rules 1~:' and 1~1a 
1 enrichecl with combinator EB for 
from 1 combinator. Situation 

is given from combinator EB for rules ·1 ancl EB~;'. 

1.1 

8------
.1 

:3 · ~4_nother 

thf ces hcre is a 
id( o:. nil) 1 ( ()' () 

C\ ni!= cu1ZI 

(P) 

-<:- --

t1ons 

f3.nil u d.n.il 

\ 

1 

·¡ o . 1:;-'(idi,(t),<) o - ' . . 1 . . 

o .n.n¡.,_ 1 p.m/ ~ zd\o nz.l) 3.nzl 

3:.4 ecifications 

The follmving proposition shmvs a canonical construction of an ATS from a 

1 For each ba.sic SOS speci.fication the sintchtre is an ATS', 

-whe-re 
dcl . = (Tr;,Ep,lp,--+p,l), wzth 

® Tr; is the set of closed tenns over 

--+p~ T¿; x Ep x Tr:, is the set of iransitions than can be pr'oved in R. 

clef {( · (I:<X '} "' Ep = a:¡¡): p -7p p . 

clef 
"' /(a :p.) = ¡1, 

.,. lp is the grea.test bzna-ry relatum over Ep, such tha.t for a/1 afpb, 

' f(_l 

Vi E Dom(a) n Dom(b). ((a(i) o b(i) V (a(i) = é) V (b(i) = é)) (l) 
a ::¡f b (2) 

n:o 

P. 



Proof The proof is routine : it consists m ~lwwing that relation ~ p is deterministic, forward stable 
and commutative. We leave it to the reader. O 

In Definition 1 the rec¡uirement (2) that o :/:bis reclunclant whenever Pis a irreflexive specification, 
i.e. for all axiom r E R, source ancl ta.rget combinators are clistinct .. 

Lem.ma 1 Condliion (2) in P10positzon 1 i~ Ndundant if and only if the specification P is irreflexúe. 

Proof If Pis irreflexive, then Ve E Ep there exists a position p (corresponcling to the application of an 
axiom), where E(p) :/:E ancl e(p) />e(p). So conclition (2) is reclunclant. 

If P is not irreflexive then there is a reflexiw axiom with schematic rule p, s.t. p o p. The schematic 
of the proof which uses only one application of this axiom is p(E ... E), ancl we neecl the conclition (2) in 
orcler to preser,·e lp irreflexive. O 

4 General Cong:ruence Theorem 

4,1 Motivations for coolness and irrefl.exivness hypothesis 

Coolness h ypoth esis[Blo95] is clearly necessar~ if one wants to abstract from r's. Indeed, take the com
binator + of ces \\'hich does not fulfill Cl::mse l. in Definition 7: we have T.o:.nil =sT o..nil but 
r.o:.nil + J.nil '/=sT ct.nil + ;3.nil, because v.hen the first process only makes its T move, there is no 
possible equivalent move for the seconcl one. - combinator is not the worst case one can think of, since it 
is manageable if we consicler a rootecl version of ST-bisimulation. A really bad combinator which does not 
fulfill coolness can be. for example, a combinator which corresponds to the identity for any visible action, 
and stops the process when a T occurs. Then process o. . .3.nil ancl o:.r.,6.nil, are no more ST-bisimulation 
equivalent when put in this context. 

Clause :..2. of Definition 7 is also necessary take a combinator which simply renames T into a visible 
action o.. cal! it alann. Then, r.nil =sT r.r.nil, but olarm(r) 'tsT alarm(r.r.nil) as they respectively 
correspond to o..nil ancl o:.n.nil, which are tE>t even trace ec¡uivalent. 

Regarcling irrefle.rivness hypothesis, TablP 1 describes a non-irreflexive specification. because of axiom 
(r.J). 

( r·¡) 
1 1~0 1 

( 1'¡) 

b: o- 1 
y~y 

a:c~ 1 b:a 1 
X--+X !J--+y 

t'( , . ) .f:;',, ~'):u f"( . . _!ji) . X, !f . .1 ,¡ .. ( f:;o..(alb):o: '( f x, y) .f x', y') 

Table 1: 

Although J and 1 are ST-bisimulation equivalent- they both can only perform the infinite sequence 
o:w, with no branching point and no concurrent events -, when put in the same context, namely f( J, .), 
they turn out to have a different features regarcling concurrency ancl therefore are no more ST-bisimulation 
equivalent no ti ce that .f~a o ¡¡;a ancl V o o ·V, but la/> L,,. Indeed, from .f( .j, J) it is possible to perform 
two independent events : 

and 

whereas, starting from J(.j, l), the only po5~ible transitions are 

and 
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but the tv>o involved events .f;;o:(c, JO') and ""(. 1 l ) are not independent. V n' o 



4.2 General congruence theoren1s 

Hypothesis for coolness and irreflexivity are the right notions since we prove here that they are sufficient 
hypothesis to ensure the congruence results for ST-bisimulation. Moreover, we show that coolness can 
be slightly rela.xecl when dealing with rootecl ST-bisimula.tion 

Let us first fix some vocabulary, inspirecl from Bloom's terminology. 

Definition 9 A combinator f of P is said to be ta.me (in P) if it is cool and for all other combinator g 

of P, if f -- -> g then g is tame (in P ). In other words, tame combinators in P forrn the greatest set 
of cool combinators which ·is el o sed under - - -> relation. 

A combinator f is ta.ma.ble (in P) if for each rule 

then g is tame in P and if the rule abo ve is not an axiom then there eúst also rules 

T 

1/.i ---;. 1'i 

f(ul, 11.2 ... , Un) 2.,. g(vl, V3 ... , V11 ) 

In ces specifica.tion, the set of tamecl combina.tors is { Ct.} CYEAct U{ id, í'l'l' í'l':J' 1}. The remaining com
bina.tor + is ta.ma.ble. Notice tha.t all the CCS combinators are tama.ble, but that in the general case 
being tame cloes not imply being tamable. 

Definition 9 can be interpretecl a.s follows : in the context of a tamable combina.tor f, any possible 
tra.nsition leacls to a ta.me context. Although patience rules are missing, it is possible through a gen
tle T move to en ter the tame portian of the specification at a. place g where similar rules as for .f can apply. 

U ncler certa.in conclitions, tame combinators preserve patience rules : the following lemma shows in 
which case pa.tience rules propa.gat.e among cool combinators. 

Len.1n1a 2 If .f and g are cool s.f. f - _1'_> g, f - -(7-> y and p o cr, with p = g;:''Jo .. 'In, cr = gf1 ( 2 .. (n 

patn,k 
then for all k s.t. 17~,; 7'= é (wt also have (~,; 7'= é) wc have g -- -> , patn,k o p and pat"·k o cr. 

' 
Proof Omittecl. D 
Theorem 1 Let Gp be the ATS associated toa given irrefiexive sz¡ecification P and let R.p be the greatest 
ST-bisirnulation o.fGp. Then for allt1, ... ,tn,1l.l, ... ,ll11 E T2:; and fE :S", iff i.s tame in P, then 

'R.p : t=.sr ü implies 'Rp : .f({) =sr .f(ü) (2) 

Proof Let R. bet the smallest subset of ST(Gp) x ST(Gp) x P(Ep x Ep) conta.ining 'R.p a.ncl all the 
tri os 

(f(i) + 2::::>) (aJ ), f(ü) + L pi (bi), {(pi (cJ ), pi (bi))lj E J}) 
J J 

such tha.t ·h c~f {j E Jla{ 7'= f} (the índices ofthe events where the sub-term k is active). Notice that 

Vj, k. a{ = é ~ b{ = é (this is clue tha.t Pj ask for é always in the same place). 

The proof that R. is a.n ST-bisimulation of G p is easy. For lack of space, this proof will a.ppear in a 
full version of the pa.per (see appenclix). 

D 
Theoren.1 2 Let Gp be the ATS associated toa given irreflexive specification P. Then .for allt 1 , ... , tn, u 1 , ... , u 11 E 
T¿; and f E :S", if .f is tamable in P, then 

Proof Ea.sy. 

744 

t =.,.sr ü implies .f(f) =rsT f( ü) (3) 

D 



5 Conclusion 

In this paper, we have presentecl general results for compositiona.lity: "'e have proved that compatibility of 
process description language combinators w,r.t, ST-semantics can be clecicled syntactically, ST-semantics 
is considerecl in the setting of A,synchronous Transition where ST-states are easily rep
resentable, 

Concerning the SOS spccifications, we have considerecl so-callecl baszc SOS specifications and shown 
how to derive from them an Asynchronous Transition System, This process has its own interest as 1\'e 
propose a IYay to cleal with invisible actions (T's), To our knowleclge, this is a new contribution, Then, 
\\'e establishecl that when ( ancl only when) lhe spec:ification fulfills the syntactic ess hypothesis, 
i,e, no axiom is inclependcnt with itself the contexts built up from so-callee! tamc combinators of this 
specification preserve 5T-bisimulation equivalen ce. \Y e al so considerecl a super family of previous contexts 
by clefining tam able combina.tors (en abling us to de al with the non-cleterministic choice of ces' among 
many others) ancl showecl a similar result but for a \·ariant of ST-bisimulation, I'·Jotice that what 'Ne call 
Rooted ST-bisimulation in this paper, is not a fully ST-basecl equi,:alence, r::incc the first transition has 
no cluration, \\'e will it discuss later in the conclusion, 

Olwiously, wc could have investigatecl many other truly concurrent ec¡uivalcnces, Actually. in the 
absence of T 's, the reslllts can be founcl in [EHP95J : we obtainecl congrucnce theorems for all cquiYalences, 

In the presence of T's, ec¡uivalences which are not ST-basecl ec¡uiYalences, e,g, those based on partial 
orclers, are not fully interesting : incleecl, no equivalen ce from 1ceak interleaving bisirnulation to bran eh 
history preserring bisimulation is compatible with the refinement of actions, as showecl R, ·van Glabbeek 
ancl the seconcl author (see [Pin93]), Newrtheless, we conjecture a positiYe rewlt for any known concur
rent equivalence, because. as we will cliscuss it later, the refinement of actions is not definable in basic 
SOS specifications, 

Analysing our approach, one might ask for fe\\' choices, First of all, about ST-states, we did not 
consider ongoing r's execntions, altbough it might be very useful ancl relevant to study certain properties, 
But there is no influence here as ST-bisinmlation allm\'S free r's executioiL 

Seconclly, it must be emphasisecl that thc cocling of T rules can be hancllccl clifferently, However, nice 
properties of Lemma 4 encourages us to follow this approach, Nevertheless, a rnore complex cocling for 
T rules IYoulcl enable us to work 11ith finer ec¡uivalences than the proposecl rootecl ST-bisimulation, :-\ 
natural proposal can be 

Definition 10 (rooted ST-bísinrulation) !re say !ha! hco sta/es s and 1, are rooted ST-bislmilar 

(s =rsT r) lfJ s =sT r and 

" if se 7 s1 then crists a palh 1cith 1 en more: 

" I'lCt- cersa, 

\Vith the definition above, Theorem 2 cloes not hold anymore, This problem cleserves being studiecl 
e arefully, 

\Ve cliscuss now the framework of the paper, to see somehow if the constraints over the :;pecification 
formats can be overtaken, Basic SOS specifications are reasonably powerful since they contain CCS and 
many others, However, it is not sufficient to describe anythingl For example, [Ech93] showecl that the 
refinement of actions cannot be treatecL Enlarging the kincl of specifications is at the moment an open 
question, but IYe can straightavcay rule out SOS specifications with negative premises: concurrent ohjects 
unclcrlying such specifications wol1lcl not in general be an Asynchronous Transition Systems, 

It is then natural to question the choice for ATS, As these moclels are a kincl of Transition Systems, 
they permit an extension of usual operational interleaving semantics, while provicling a way to define ST
states, But ATS suffer from a lack of expressiYness: it is not possible to reprcsent the leftmcrge operation, 
or the priority one, On the other hancl, priority combinator is naturally representable in moclels for ST
states ( sce [D ER95]), As in o m context, t he relevant objects are ST -states, we are temptecl to riel of 
ATS (as well as Transition Systems with Inclependence [Sl'\vV93], ancl Trace Automata [Sta89]), In r-Aller 
worcls, a perspective for improving the present work, would consist in searching for a sernantic rnodel 
with ST-states as primitive objects (see [Gou94]) s,L it can be describecl in SOS specificatíons 
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lemma present a cllaracterization of 

I.1e:aJllla 3 Th f s-ct Gr) ihé lwst séi D C X ) co 

D c~f {,. _L o - .T 1 

i 1 1. ~n ::1 ¡r - E ~ /\ :J!f E E J.(,d = !/ec 1 1\ f )/\ cF i E J((Ju 1 O [/u 1 )} 

J 

and s.t. f(t¡ . ... t") + LJ (Y (a{ .... a{,) E D 1chenutr 

., ensts g l)i· uch that foral/ j E J, pJ =!Jo, 

r¡·¡. 
Yo.J 

fo r al/ j E J , f - - -> 

"" foral/ j # 1 E J 
1 

l · · .'/] n 

·v 1 . .. clef { . J 1 J _¡. } E - ce 1 tu .h = J E . a k 1 f 

Pn 
Jf p 

iff foral! f + LJ [/o 7 E f # [!. 

ihfn foral! f + LJ !J,,, E 1 J 1::; l. 

The following lemma show that patíence rules sometímes propagate bet\veen cool combinators (in this 
sense, bet\\·een t an1e ones). 

p t7 

Lenn11a 4 If f und g are coa/. f -- -> !1· f -- -> g and p o CF, 1cith p = g;~ 1 ' 1 " .r¡,. CF = 1 ( 0 .(,, then 
pclt n 'k 

foral! k· s.f. 1/k # f or(k #e g --->, potnkop andpat""oCF. 

Theoren1 1 Lti Gp llf the ATS associatul to a gzcen irreficcz¡·e specificatwn P and !tt Rr be the 
S'T-lnsnnulation ofGp. Thtn for allt¡ . .... 111 . u¡, ... , Un E T'i:. and fE 2:: 71 • iff zs tame in P. ihen 

Rp: f=c;r u nnplzes Rp : f(i') =sT f(ü) 

Proof \',-e R 1 o be the srnallest su bset of ."'T( G p) x ST( G p) x P( Ep x Er) containing ancl all the 
tri os 

(f ( {) + L rl ( cJ ) f ( 17) + L pi ( b7 ) { ( rri ( aJ ) . ¡) ( bJ )) 1j E J } ) 
J J 

wheneYer 
l, ... n,(lk+ b{ . . { ( , b{ ) IJ E h }) E R P 

J,, 

1 T def { . ] l w 1ere .) k = J E . 
. 77~ . r¡} 

Notice that for each trio exists!! s.t. for all j E J. rl = g01 " ancl Vj, k. = t -<===? b{. = f. :c.ince hoth 

ancl o{. are sub-terms of r;i at the same position k. 
\'Ve ciaim that R is an ST-bisimulation on G p. ~"-s a clescríptíon of the proof teclmiques 'il'e ha ve chosen 

the less Pasy case for ST-hisimulation, nanwly thP case 2a of Definition 3 whPre the procec;s engages lll a 
new actíon concurrently with alreacly ongomg ones : 

S'T( G p). By lemma 3 this statc can be written _f({) + LJ lJ, (a) wherP 

T¡ • .. r¡ n 

f' 9c.' 
® - - -> 

® V j E I ( r) o p) . 



Vk. Vj Eh,. (ak # r =? a{Irak). 

Because f is cool, V k= l ... n. (ak #e=? l(ak) # r), then, for all ct~,; #e there exists tk+ Lh +ak E 
ST( G p) and by clefinition of R p there exists a path 

7Tl k 
fk :T 1 bk 
~ v.k ~ 

s.t. 

@Vi= l .. . mk,j E Jk(e~,Ib{.) 

., u~ + Lh bi + bk E ST( G p), ancl 

As f is cool, there exists a patience rule for posit.ion k in .f. \Ve can com;trud a sequence of 
events, 

t 11 'k ( 1 ) t ¡¡ k ( ') ) pa e, ... e k , ... é , pa . · · e, ... e¡. , ... e , ... é) 

which can be appliecl to f(u) ( é1llcl in general to any other term of the form f( ... V k, ... )). Concatenating 

all such sequences for each k, we builcl a path starting in .f( a.ncl end up f(¡!) from which p(b) can be 
executecl. 

. . . . . , k ( j ~r By lemma.4 and the clefinit.ion of'Rp foral! k= 1, ... , n, for allJ = 1, ... , mk, pat ' c, ... , tk, ... , r:)Ipgry 1 

--+ .,,.7 17.7 -.--¡. 

aud g7r1 ~n (b)Ipgc/, .. n (bJ'), so the good Ccmclidate is 

r¡'li .r¡',, (bJ) + u'll· ·')" (b) 
' (\} ~1 0: 

J 

D 
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