SOS Specifications
for Compositional ST-Semantics *

J. V. Echaguet S. Pinchinat

7 Instituto de Computacién, Facultad de Ingenieria.
Universidad de la Repiblica, Montevideo. Uruguay.
* Institut de Recherche en Informatique et en Svstémes aléatoires,

Campus Universitaire de Beaulieu, 35042 Rennes Cedex, France.

Abstract

Syntactic formats of SOS specifications as a criterion to obtain compositional semantics have
widely been investigated. almost always in the interleaving setting.

In this paper. we study the case of truly concurrent semantics. We show how to derive Asyn-
chronous Transition Systems with invisible actions from SOS specifications. and we exhibit simple
syntactic conditions over the specifications to get compositionality for (rooted) ST-semantics. Clas-
sical process description languages like CCS fit the conditions.

1 Introduction

SOS specifications techniques [Plo81] is a general method to define process description languages,
e.g. CCS [Mil89]. It naturally induces operational semantics for the language. Since this last decade,
we observe considerable progresses in this field. In particular, strong results relate syntactic aspects of
the specifications, as rules formats. with semantic properties of the underlying models [Sim85], [BIM88],
[GV89] (see also [GV92]). [Grog9] (see also [Gro93]), [Gladd], [Blo93]. Results of this kind are powerful
since using a particular format for defining yvour favorite language ensures semantic properties. Basically,
all the results show that we get compositional semantics for free.

All the previously mentioned works only apply to non-deterministic sequential aspects of concurrent
programs. This not surprising since SOS specifications naturally define Transition Systems. However,
compositionality results have been established for non-interleaving models, but they all focus on a par-
ticular language. Since then [BD92] went ahead by giving a way to “read” true concurrent semantics
in any specifications provided they fulfill svntactic conditions. [BD92] showed how to derive a trace
automata [Stad9] from an SOS specification (Trace automata are Transition Systems enriched with an
independence relation over transitions). But no semantic equivalence was considered.

Among the truly concurrent equivalence. one of the most relevant is ST-bisimulation equivalence
[GV8T] : it does not reduce actions to atomic ones, and by expressing an elementary form of duration
(each action has a beginning and an ending). it constitutes the right notion of behavior compatible with
the refinement of actions. see [Gla90] but also [Vog91]. The main notion in ST-bisimulation is the one of
ST-states . an ST-state represents the state of the process when concurrent activities are executing.

In this paper. we address the following question : is it possible to determine syntactic criterions over
SOS specifications in order to get a compositional ST-bisimulation semantics?

We partially answered the question in [EHP95]. Strongly inspired from [BD92], we have shown how
Asynchronous Transition Systems (of [Shi85] and [Bed87]) underlay SOS specifications for languages

*Work partially supported by a French Government’s Scholarship, by the “Plan de Recursos Humanos BID-CONICYT”,
PEDECIBA - Computer Science (Uruguay), and the project “Formal models for Concurrency” of the French Government
ECOS program. E-mails :echague@fing.edu.uy, Sophie.Pinchinat@irisa.fr 735

with no invisible actions. Asynchrounous Transition Systems offer a very easy way to define ST-states as
well as ST-bisimulation. The main contribution of [EHP95] is the determination of a simple syntactic
condition over the axioms of the specification in order to guarantee semantic compositionality, not only
for ST-bisimulation, but also for other truly concurrent bisimulations.

In this paper, we fully answer the question. Namely, we consider SOS specifications containing in-
visible actions. In this framework, the approach of [BD92] has to be strictly extended to deal with
rule concerning non observable actions. in order to built an adequate Asynchronous Transition System.
The conditions over SOS specifications regarding weak ST-bisimulation has to be closely related to the
conditions proposed in [Blo95] for weak bisimulation and branching bisimulation for non-interleaving
models.We show that specifications describing so-called tame combinators have compositional weak ST-
bisimulation semantics.

Existing operators such as the deterministic choice of CCS (and many others) do not behave properly
with weak bisimulations, but does with rooted ones. To cope with these combinators, we exhibit syntactic
conditions (delivering tamable combinators) to get compositionality for rooted weak ST-bisimulation.

The paper is organised as follows : Section 2 introduces the semantic framework, namely Asynchronous
Transition Systems, ST-states, ST-bisimulation and its rooted variant. Section 3 1s devoted to the
construction of the Asynchronous Transition System, illustrated with an extension of CCS language.
Finally in Section 4, we show the congruence theorem for weak ST-bisimulation (resp. rooted weak ST-
bisimulation) with respect to all tame (resp. tamable) combinators. We end up by concluding remarks
and future works.

2 Truly Concurrent Semantic Models

2.1 Asynchronous Transition Systems

We assume given a set of action names Aci = {a, 3, v...} and a new action name 7 & Act. We denote
by Act, = (L T}
| A Labelled Asynchronous Transi a structure G =

(S, E, .7, —, Z> where

r] - £ 4 TR
S ={s u, 51,50...} 15 a sel of states.
o [={abe...} isasel of events.

e I C Ex I is an wreflexive symmetric relation of independence between events. We shall write alb
mstead of (a,b) € 1.
~ . . € - ; e
o —C S5 x E xS is the transition relation ; let us we write s — s' instead of (s,e,s’) €— and s — f

€

s — s for some s’ € 5. The transition relation has to fulfill the following ihree properiies :

. . € €
Determinism [fs — 51 and s — so then s; = s9.

b

. a s b a
orward stability [falb and s — s1 and s — so then Ju, 57 — U A §5 — w.

el Lo

7 a b B y b
jomnmutativit v If alb and s — 51 — w then dsq.5 — 55 — w.

[

Asynchronous T

By means of resources sharing, events have to be understood as tasks. Two tasks are independent if
they do not share the same resources. Now the three properties required in Definition 1 can easily be
understood. As events are tasks, it is then very natural to ask for a deterministic model. The forward sta-
bility property expresses that if two independent tasks, namely « and b, can be performed, the execution
of one them would not disturb the possibility of executing the other one, since they do not share the same
resource. The commutativity property tells that if a task b can be performed after the execution of a task
a independent with b, then the resource needed for b were already avaible before starting a otherwise a
would have produced the resource needed for b, which is not what we intend by being independent. So b
could have been performed before ¢ and for the same reasons, « can still be executed after b. Moreover,

736

c:ast alb

/\
\/C>

Figure 1: An example of an ATS, with alb

in both case of forward stability and commutativity, the state of the system after the execution of the
two tasks (in any order) is unique.

In graphical representations, the independence relation is represented aside. Transitions between
states are drawn using labelled arrows. A label of the form @ :a means that the transition gives rise to
event a with {(a) = a. Figure 1 is an example of an ATS with 6 states where F = {a,b.c,d} and alb.

With models like ATS". states representing ongoing activities of the system can be derived. Consider
for example the leftmost ATS of Figure 2. The dashed area, or surface, precisely denotes simultaneous
activity of independent tasks ¢ and b. This can also be applied to more than two tasks, leading to higher
dimensional surfaces. With three tasks. one would draw a cube, with 4 or more of them, one would
not draw anything. At some point in the paper. we use this geometrical intuition for ST-states. The
definition below is strongly inspired from [Ech93].

Definition 2 (ST-states) Let G = (S.E.I,—,[) € ATS. An ST-state of G is a couple (s, {ej}jes) €
S x P(E). where

forallje J le;) #£ T

~

8y

. for (1”]6],5—*
3. forallk,leJ. k#1 e le;. Then. all the €;'s are distincl.

From now on, (s,{¢;}jes) will be written s +5" ; ¢; 1o emphasize that we not pay attention to any order
between events ej. Writing s + 5 ; ¢; will umplicitly guarantee Properties 1. 2 and 3 of Definition 2. A
ST-state of the form s+ 5 ; ¢; s said to start from state s ; s s also called the source of the ST-state.
We call the dimension of the ST-state s + 5" ;e; the cardinal of set J.

We write ST(G) for the set of ST-states of G.

Example 1 In the leftmost ATS of Figure 2. s+a+0bis an ST-state with dimension 2. whereas s; +b-+c¢
is not (defined) as b and ¢ are not independent.

Notice that any state s 1s a particular ST-state with dimension 0, starting from s where no event is
executing. A transition s — s’ is also an ST-state, namely s + e, with dimension 1. In the following,
primative ST-states are those with dimension 0 or 1.

In ATS’) only primitive ST-states are represented. However, thanks to the independence, we get a
way to combine primitive ST-states in order to get higher dimensional ones.

2.2 ST-bisimulation and rooted ST-bisimulation

The kind of behavior underlying ST-bisimulation equivalence is based on the notion of ongoing activity
of processes : the existence of an ST-bisimulation equivalence between two processes, i.e. ATS in our
framework, is simply defined as a classical bisimulation but not only between primitive ST-states (of
dimension 0 and 1), as classical bisimulations do. but also between any possible ST-states of the system.
Additionally, the ST-bisimulation relation has to be enriched : instead of defining couples in the relation,
we consider triples where the first two components are (equivalent) ST-states and the third component is

737

a mapping which a link between ongoing actions of these ST-states, as it is necessary in the presence of
auto-concurrency, i.e. concurrent events with same labels. to relate unambiguously every ending phase of
each action with its corresponding beginning. From a geometrical point of view, the mapping is defined
between the sets of edges of each object, which can be consistently extended as the ST-states grow.

Originally, ST-bisimulation was proposed over Petri nets [GV37] and over Event Structures [Gla90].
Its definition in ATS’) as proposed here, definitely improves its simplicity, mostly because there i1s no
need here, comparing to previous approaches, to take into account the past of the computation.

Definition 3 (ST-bisimulation)
Let G= (S, E,I,—,l) be an ATS.
A relation R C ST(G) x ST(G) x P(E x E) ts an ST-bisimulation of G, iff

1. 4f (s+) jaj, 7+ 3 g, br,h) €R then

(a) h:{aj}jes — {br}rer has to be a label-preserving bijection, i.e. l(h(a)) = I(a).
(b) (r+> b s+ ;a;,h™t) € R, where h=' is the inverse function of h.

2. forall (s+ 3 ;a;,r+) ;br,h)ER,
a) if s+ a; +a € ST(()G) then exists a path with 0 or more 7, r e—IQ:TeiT el r', such that
(a) of 27 @ 1
Vi=1...m,j€J (e'Ibj), v+ pbr+b€ST()G) and (s+ Y ;a; +a,r" + Y j by +b. hU
{(a,0)}) € R,
/

: an h(ay o
(b) forallk € J, let s',+' € S respectively be s.i. are s == 5" and r W)t then it 4s the case that
(s"+ ZJ\{}.:} aj, '+ ZK\{M(L)} bk, /1|{a,7'}_1e1\{ak}) eER.

elireir e

(c) if s s and Vi € J. (elaj) then cwists a path with 0 or more 7, 7 — — - ="' such
thatVi=1...m,j € J. (¢"Ibj) and (s'"+ >, a;. " + 3 br,h) ER,

For alls,r € S, we write R : s =g r whenever R is an ST-bisimulation of G and (s, r,0) € R, and we
ertend this notation to n-tuples (s1,...,5,) and (ry,...,ry) of S™ by writing R = (s1,...,50) =s7 (1, ... 7n)
(or §=g7 7) whenever R @ s; =g vy forall j =1,...,n. We write s =g v whenever there erists R s.1.
R :s =57 .

The definition above has to be red as follows : Clauses 1 is clear. Clauses 2a is the classical transfer
property of bisimulation for growing ST-states, or in other words when the beginning of an action is
observed. Similarly Clause 2b correspond to an ending phase.

Note that when no concurrency is considered weak ST-bisimulation corresponds to delay bisimulation

[Wei89], [Walsg].

Definition 4 (rooted ST-bisimulation) We say that two states s and r are rooted ST-bistmilar
. a:p . elir 7 e bip
(s =psr 1) Uf for all s ZE ¢ there exists a path v = = ... =T L such that s' =gp 7, and

vice versda.

Rooted ST-bisimulation should be called “interleaving” rooted ST-bisimulation, because The first
move consists of an interleaving rooted delta step before considering classical ST moves.
Consider Examples given in 2.

ast b B FEesr astxb: B FErsT m A
alb QO ‘ \ ‘ O 510 O s, 510 O s,
a EsT Bl/ g% a 7 C{% « #sT \Né% o
738 w U u

Figure 2: Example for =¢p and =, 57

Remark 1 Classically. note that if Ry and Ro are two (rooted) ST-bisimulations of G so is Ry U Ry,
and consequently, there exists a greatest (rooted) ST-bisimulation of G. Moreover, this (rooted) ST-
bisimulation of G, when projected onto its first two components is an equivalence relation over S, the set
of states.

3 SOS-specifications of Asynchronous Transition Systems
In the sequel, we assume given a set V = {w. v, uy, vy, ...} of variables.

Definition 5 Let © = (. ari) be «a single sorted signature, where F is a set of function names (or
combinators) different from V' and ari: F — N gives the arity of the combinators.

A term on the signature ¥, or simply a S-term, is a labelled tree over . i.e. a partial function
t:(Np) — 2. We write Tx, for the set of closed terms over ¥, that is ©-terms containing no variables.

In the following, if ¥ = (F.ari) is a signature, we write simply “f € X" instead of “f € F and
ari(f) =n", and “f € ¥ if f € T for some natural n.

3.1 Basic SOS specifications
Definition 6 Given a set of actions Act = {a,8...} and Acl; = AcltU {7}. with typical elements

i, ... A Basic Structural Operational Semantics specification (or specification for short) is a structure
P = (X, R) where ¥ = (F, arl) is a signature and R is a set of rules s.t. for all » € R, r has the form

Hay Hip,
U[l — l’jl . Uvim — Vi,

(1)

. M
Jlurugoooup) — g(vr,va o, vn)

where u;, v; are distinct variables. u; = v; ff i € {i1,. . .im}, g, s € Acty, f,g € T™.

. I . m . .
e Eupressions w;; — v;, arc the premises of rule r and f(uy ... un) = g(vi...vy) its conclusion.

e Combinator f wn the conclusion of the rule will be called the source combinator of r, and g the
target combinator.
Notice that as long as two combinators occur in the same conclusion of a basic SOS rule, then
ari(f) = ari(g).

e A rule r is an axiom if it has no premises.

Definition 7 (Basic definitions and properties in SOS specifications) Let P be a basic SOS
spectfication.

e An axiom is said to be reflexive if the source and the target combinators are identical.
A specification P s irrveflexive whenever none of its azioms are reflexive.

e Guven a specification P. the patience rule for position ¢ in f s the (possible derived) rule

-
Up — 1y

. T
./-(U‘luﬂuiwu-un) —"f(’U,l,...Ui‘...Un)

e A combinator f is cool in P (n.b. we follow the Bloom’s terminology) whenever
1. no rule for f contains premises mentioning 7's, except the patience rules required by the pre-
vious clause.

. . . I . .

2. for all rule v with source combinator f, and each premises u; — v; of v, there exists in P a
atience rule for position 1 in f.

patie forp ! 739

3.2 An example

Although the format of the rules seems very restrictive, SOS-specifications are expressive enough to
encode for instance all the CCS combinators as noticed by [BD92] : we extend the syntax of CCS with
id (the identity combinator), m; and 7 (projections). Example 2 shows a subset of CCS rules (without
the rules for restriction and renaming).

We also introduce another combinator, here called angelic choice, closely related to [BHR84]. This
combinator will be used to illustrate particular results of the paper. Intuitively, the angelic choice chooses
between two processes, like combinator 4+ of CCS does, but only when a visible action is performed by
one of two components.

Classically, for combinators like 4, |, & we use infixed notations, whereas for less classical ones we use
prefixed notations, e.g. w1, Ta,...

Example 2 Additionally to the set of combinators occurring in the rules below, we add a combinator
weth arity 0 classically named nil to denote the process that does nothing.

1
— p—0p
(ru) Ly id(p (734) —
u I (») i id(p) 2= id(p)
p =y ¢4
(‘P+l) 1 B (7)-1-2) " ,
p+qg—m(p,q) p+q—mp,q)
neoy ooy
p—p ¢ q
(7571'1) ;_L ¥ (Tﬂ':)] ﬂ. .
m1(p,q) — m(p'. q) ma(p, q) — m2(p. ¢')
Ko oy a Kooy
pP—p p—1q—q 1—q
(r1,) o [D — (72) & .,
pla—1"1q pla—1p'lq pla—rlq
(ror) — LTV gy UL Ry 1
’ Tpeqg—pay Vopdg=yp TpdgSq

pdqg—p @y

The specification above provides us with an irreflexive basic SOS- specification. Language CCS is
defined when we remove the rules for the angelic choice. Notice that combinator + is not cool since there
is no patience rule for the first argument, nor for the second one. This is not the case for & thanks to
rules (rg1)and (rgz). In rules (1:d). (rr,). (rr,), (7, and (r),) when instantiating p as 7 gives the the
patience rules for the corresponding combinator.

We shall see in Section 4 that coolness hypothesis is necessary regarding congruence properties for ST-
bisimulation.

3.3 Coding proofs in transitions

For the construction of an ATS derived from the specification, we follow [BD92] : the idea is to keep track
in the label in the rules’ conclusion of informations about that rule. This information (called schematic
rule in [BD92]) enables us to define event-labeled transitions : the events are simply trees/terms of
schematic rules. These terms (called schematic proofs in [BD92]) are derived from the proof trees of the
transitions in which the rules are replaced by their schematic rule.
Transitions have the form p =% p/ where @ is a schematic proof and p € Act,.

In this paper, we use a fairly handful convention to write schematic rules. Before all, and for technical
reasons, we introduce a new symbol ¢ to denote idleness of processes. € will be the label of idle step.
Now, if r is a rule of the form

Hay Hapy,
Uiy, — Viy .. Ui, — Vi,
. I
Flug,us o ug) — g(vr, vz .., 0n)

its schematic rule will be written g}t 727" where p is precisely the label of the conclusion, and 7; is the
label of the premise w; 2 y; if it exists, € otherwise.

However, schematic rules of patience rules as well as patience rules obtained from general rules (like the
patience rule we obtain from (7),) of CCS when u = 7) are coded differently : consider a patience rule
at position 7 in f, then its schematic rule will be written pat® /). Notice that the target combinator
(equal to f as well) does not appear.

In the following, we use Greek letters p, o, ... to denote schematic rules.

740

From this point in the paper. we propose a new presentation of the specification, where the schematic

proofs are inductively represented in the rules themselves. The reader has to be persuaded that the
specification we obtain is fully equivalent to the original one.

Let » be a rule which is not a patience rule, with schematic rule p and of the form

I

'

i
UZ‘1 —F U.I'l e U-im — Ui,
. i
Flug uz oo ouy) — {/(’Ul! Ua ..., 'Un)
will be coded
Day iy Qi Tty
Uiy i Ug,, — im
. pler,. ... en)it
Slug us.ooouy) — g(vi.va ..., vn)
where ¢; = € whenever 7 & {i1,.... 7, }. Notice that in case » is an axiom, e¢; = ¢ for all i.

The following example shows how Example 2 will henceforth be written.

Example 3

p=r
(TN)) ids (€):p idin (md) d“ :
] (p) MmlﬂNMW)
a:.T /
) p—=7p
(patiq atll(a):
id(p) " 2T dd(p)
Py ¢=q
(7)+1) ’;:(a.:’):;l , (7’+:') WSZ(e,a):y
pt+aq (P q) pta T — maAp.q’)
Saa aa
p=p q4—q
(7,71'1) 71"1-“;((1\5!:0 , (7’772) w;g_(e,a):a
TP, q) (P q) map,q) = ma(p.q)
@r ar
r—r ¢ —q
(I)atﬂ'l) patlae)r (pafﬂ'z) pat??(e.a)T
_ o/ - A —_ /
m(p,q) — 7o) ma(p,q) = maAp,q)
p p g ba q ¢ =4
(7’[1) I‘E‘:E(.arf):a /o (I’) |§35(ﬂ‘b):’r , (7’12) 3 |:;Ql'5~a)50' /
plg = ="p'lq vl =" plq rle™ —" pla
a:T g a:T /
. p=p 1—q
(],)(Ifh)) pat>1(a.e)T , (]7(l.t[2) pat2-2(e,a)T ,
pla =" Pl rle” =" plg
p =y ¢ =
(_pa‘t@l) _patMacpr (pate,) pat®?(ea)T /
pEq P Eg p@yq =Y
Cana aa
pP—0> 1 —q
(77@1) Taclae)ia (7,‘52) T
pbg T — P PEg — q
Apart from the way we treat patience rules. the coding we propose is a (hopefully) comfortable encoding
of the proposal in [BD92]. From now on. we consider SOS specifications with this new coding.
The use of schematic rules makes loose information about the set of rules: we abstract from the source
combinator of the rule. Following [BD92]. the information can be completed in a directed graph where
e combinators are vertices. and

. 6 . . . pla
e arrows f ---> ¢ representing each rule with conclusion of the form f

Definition 8 As in [EHPY5] we write po o whenever Vf € X

1Ay b pt

qg.
741

P a . r
e f -->--> <= f-->---> and

ey P . . p 4
oaf f ---> g1 and [---> go then there exist g3 s.1. g1 - S g3 and g5 ---> g3.

MNotice that in the second point of Definition 8, because of point 1 we have either g3 = g1 = g2 ((a)
equal or (b) not to f), either (¢) p or ¢ is a patience rule, say p, and it must be the case that g; = f and
g2 =ygs # |-

Iigure 3 shows the situation for CCS combinators a.,id,+, 71, 72, | enriched with combinator & for
the angelic choice. Situation (a) happens for rules |¢ and [$* starting from | combinator. Situation (c)

is given from combinator & for rules pat™! and BLE.

patt?
A AT LT TN e
’ \ o f . vopat
] v paiit W)
\
/

- A ~
e - _ -
i), -
————— Lol id) /">Kf --
- - ~
) o, e | — ,
A ’ “ / \ /f< N
v o S NI b
_ +/
pat?:! pe 0 """~ q
AN T N ﬁ_’y -~
; 7 N
; \\/ . b ! mat??
NN
N /\% N\ / /\ 1
W o) <
. - -
\/{\\\ P N
TeE /’ N J7 f‘\\ , &
la N . Q’E\\ // . P 2
- M N 7 ca B
. - T
/
> @
/ N
i\ 1
Y / A 29
pat®t N 7 h L opat=
~ AN

Pigure 3: Another presentation for specifications

Example 4 Starting from the CCS example. here is a proof (P) of the C'CS transition o.a.nil | f.nil =
id(a.nil) | Bonil where a =|2° (id?(€), €).

(83
. €€ .
anil — o.nil

falore id(aenil) B.nil = 3onil

|@e(ids (€),e):

i
a.onil

(P)

id(anil) | 3.nil

a.cnil | Fonil

3.4 Specifications of Asynchronous Transition Systems

The following proposition shows a canonical construction of an ATS from a specification P.

Proposition 1 For each basic SOS specification P, the structure Gp s an ATS,
where Gp S (Tg, Ep Ip, —p, 1), with

e Tx 1is the set of closed terms over X,

e —pC T X Ep x Tx is the set of transitions than can be proved in R.

def
Ep = {(a:p):p=pp}.

@

la:p) def W,

o Ip is the greatest binary relalion over Ep, such that for all alpb,

742 Vi € Dom(a) N Dom(b). ((a(i) o b(3) V (a(i) = €) V (b(i) = €)) (1)
a#b ‘ (2)

Proof The proof is routine : it consists in showing that relation —p is deterministic, forward stable
and commutative. We leave 1t to the reader. D

In Definition 1 the requirement (2) that a # b is redundant whenever P is a irreflexive specification,
i.e. for all axiom r € R, source and target combinators are distinct..

Lemma 1 Condition (2) in Proposition 1 is redundant if and only if the specification P is irreflezive.

Proof If P is irreflexive, then Ve € Ep there exists a position p (corresponding to the application of an
axiom), where €(p) # € and e(p) pe(p). So condition (2) is redundant.

If P is not irreflexive then there is a reflexive axiom with schematic rule p, s.t. po p. The schematic
of the proof which uses only one application of this axiom is p(e...€), and we need the condition (2) in
order to preserve Ip irreflexive.]

4 General Congruence Theorem

4.1 Motivations for coolness and irreflexivness hypothesis

Coolness hypothesis[Blo95] is clearly necessary if one wants to abstract from 7’s. Indeed, take the com-
binator + of CCS which does not fulfill Clause 1. in Definition 7: we have T.a.nil =g «.nil but
r.a.nil + I nil Zgp a.nil + F.nil. because when the first process only makes its 7 move, there is no
possible equivalent move for the second one. — combinator is not the worst case one can think of, since it
1s manageable if we consider a rooted version of ST-bisimulation. A really bad combinator which does not
fulfill coolness can be. for example, a combinator which corresponds to the identity for any visible action,
and stops the process when a 7 occurs. Then process a.3.nil and «.7.f.nil, are no more ST-bisimulation
equivalent when put in this context.

Clause 2. of Definition 7 is also necessary : take a combinator which simply renames 7 into a visible
action a. call it alarm. Then, T.nil =gr 7.7.nil, but alarm(r) Zsr alarm(r.7.nil) as they respectively
correspond to a.nil and a.a.nil, which are not even trace equivalent.

Regarding irreflevivness hypothests, Table 1 describes a non-irreflexive specification, because of axiom

(7’\/)‘

ry) e rp) TEa (M) el
v N T)) D

b a4 biae
() Lot (r) —— Y
71 2
fateb)a - : featab)io
Flay) = flay) fla,y) =" f"y)

Table 1:

Although / and | are ST-bisimulation equivalent - they both can only perform the infinite sequence
“a*, with no branching point and no concurrent events -, when put in the same context, namely f(/,.),
they turn out to have a different features regarding concurrency and therefore are no more ST-bisimulation
equivalent : notice that fi*o f2* and \/, o/, but |44 |o. Indeed, from f(1/, /) it is possible to perform
two independent events :

fef(en/o

f(\/v \/) = and f(\/) \/)

whereas, starting from f(/, 1), the only possible transitions are

12 an/a)

SRS and g

but the two involved events fi% (e, | o) and f2%(y/,

743

|») are not independent.

)

4.2 General congruence theorems

Hypothesis for coolness and irreflexivity are the right notions since we prove here that they are sufficient
hypothesis to ensure the congruence results for ST-bisimulation. Moreover, we show that coolness can
be slightly relaxed when dealing with rooted ST-bisimulation

Let us first fix some vocabulary, inspired from Bloom'’s terminology.

Definition 9 A combinator f of P is said to be tame (in P) if it is cool and for all other combinator g
of P, if f ---> g then g is tame (in P). In other words, lame combinators in P form the greatest sel
of cool combinators which s closed under ---> relation.

A combinator f is tamable (in P) if for each rule

, Hay , Him
Uiy — Viy -o Wy, — Vi,
r H
Jlug,ua o up) = g(vr,va o0 0p)

then g s tame i P and if the rule above is not an axiom then there exist also rules

T Hay Hoagy
Uy — Uy . . . Uiy — Vi oo Uy >
- T Vi=ry, .. .0y m
f(Ul Uy Up) = g(v1, v vp) glur, wa .o) = g(vr,ve ..., vp)

it tm

In CCS specification, the set of tamed combinators is {a.}aean [J{id, 71, 72, |}. The remaining com-
binator + is tamable. Notice that all the CCS combinators are tamable, but that in the general case
being tame does not imply being tamable.

Definition 9 can be interpreted as follows : in the context of a tamable combinator f, any possible
transition leads to a tame context. Although patience rules are missing, it is possible through a gen-
tle 7 move to enter the tame portion of the specification at a place ¢ where similar rules as for f can apply.

Under certain conditions, tame combinators preserve patience rules : the following lemma shows in
which case patience rules propagate among cool combinators.

. . & . a . . -
Lemma 2 If f and g are cool s [---> g, [---> g and poo, with p = g1 g = gprez-tn

pat’ ok

then for all k s.1.), # ¢ (we also have ¢ # ¢) we have g ---> , pat™* o p_and pat™* oo,
Proof Omitted. l:l

Theorem 1 Let Gp be the ATS associaled to a given irreflexive specification P and let Rp be the greatest
ST-bistmulation of Gp. Then for allty,ty uy,....,un, € Tx and f € X", of [is tame m P, then

Rp :{=gp i implies Rp : f(t) =57 f(@) (2)
Proof Let R bet the smallest subset of ST(Gp) x ST(Gp) x P(Ep x Ep) containing Rp and all the

trios

(@) + > P) @)+ A (00), (7 (), 7 (b1))]j € T})
J J

such that Jy def {j€ J|ai # €} (the indices of the events where the sub-term & is active). Notice that

Vi, k. a{: = ¢ <= b} = ¢ (this is due that p; ask for ¢ always in the same place).
Yk =1, (te+ Y a,w+ y b {(al,b})li € Jx}) € Rp
Iy Ji

The proof that R is an ST-bisimulation of Gp is easy. For lack of space, this proof will appear in a
full version of the paper (see appendix).

Theovem 2 Let Gp be the ATS associaled to a given irreflexive specification P. Then for allty, ..., tn, uy,
Ts and f € X", if f s tamable in P, then

- -

L=,g7 U implies f(t) =rs7 F(U) (3)
Proof Easy. D
744

o Up €

5 Conclusion

In this paper. we have presented general results for compositionality: we have proved that compatibility of
process description language combinators w.r.t. ST-semantics can be decided syntactically. ST-semantics
is considered in the setting of Asynchronous Transition Systems (ATS), where ST-states are easily rep-
resentable. .

Concerning the SOS specifications, we have considered so-called basic SOS specifications and shown
how to derive from them an Asynchronous Transition System. This process has its own interest as e
propose a way to deal with invisible actions (7's). To our knowledge, this is a new contribution. Then,
we established that when (and only when) the specification fulfills the syntactic irreflezivness hypothesis,
l.e. no axiom is independent with itself, the contexts built up from so-called tame combinators of this
specification preserve ST-bisimulation equivalence. We also considered a super family of previous contexts
by defining tamable combinators (enabling us to deal with the non-deterministic choice of CCS, among
many others) and showed a similar result but for a variant of ST-bisimulation. Notice that what we call
Rooted ST-bisimulation in this paper, is not a fully ST-based equivalence, since the first transition has
no duration. We will it discuss later in the conclusion.

Obviously. we could have investigated many other truly concurrent equivalences. Actually, in the
absence of 7's. the results can be found in [EHP95] : we obtained congruence theorems for all equivalences.

In the presence of 7’s. equivalences which are not ST-based equivalences, e.g. those based on partial
orders, are not fully interesting : indeed, no equivalence from weak interleaving bisimulation to branching
history preserving bistmulation is compatible with the refinement of actions, as showed R. Van Glabbeek
and the second author (see [Pin93]). Nevertheless, we conjecture a positive result for any known concur-
rent equivalence, because, as we will discuss it later, the refinement of actions is not definable in basic
SOS specifications.

Analysing our approach, one might ask for few choices. First of all, about ST-states, we did not
consider ongoing 7’s executions, although it might be very useful and relevant to study certain properties.
But there is no influence here as ST-bisimulation allows free 7's execution.

Secondly, 1t must be emphasised that the coding of 7 rules can be handled differently. However. nice
properties of Lemma 4 encourages us to follow this approach. Nevertheless, a more complex coding for
7 rules would enable us to work with finer equivalences than the proposed rooted ST-bisimulation. A
natural proposal can be

Definition 10 (rooted ST-bisimulation) e say that two states s and r are rooted ST-bisimilar
(s =vsT 1) s =s7 1 and

5
elireir e

. €T . . T
o if s — s' then exists a path with 1 or more 7. r — — - —= 1/ such that s’ =g 1.
® VICE-VETSA.

With the definition above, Theorem 2 does not hold anymore. This problem deserves being studied
carefully.

We discuss now the framework of the paper, to see somehow if the constraints over the specification
formats can be overtaken. Basic SOS specifications are reasonably powerful since they contain CCS and
many others. However, it is not sufficient to describe anything! For example, [Ech93] showed that the
refinement of actions cannot be treated. Enlarging the kind of specifications is at the moment an open
question. but we can straightaway rule out SOS specifications with negative premises : concurrent objects
underlying such specifications would not in general be an Asynchronous Transition Systems.

It is then natural to question the choice for ATS. As these models are a kind of Transition Systems,
they permit an extension of usual operational interleaving semantics, while providing a way to define ST-
states. But ATS suffer from a lack of expressivness: it is not possible to represent the leftmerge operation,
or the priority one. On the other hand. priority combinator is naturally representable in models for 5T-
states (see [DERY5]). As in our context, the relevant objects are ST-states, we are tempted to get rid of
ATS (as well as Transition Systems with Independence [SNW93], and Trace Automata [Sta89]). In other
words, a perspective for improving the present work. would consist in searching for a semantic model
with ST-states as primitive objects (see [Gou94]) s.t. it can be described in SOS specifications. 745

References

[BD92]
[Beds7]
[BHR84]
[EIMSS]
[Blo95]
[DERS]

[Ech93]
[EHP95]

[G1a90]
[Gla93]
[Gou94]
[Gro89]
[Gro93]

[GV8T)
[GV89)

[GV92)
[Mil89]
[Pin93]
[Plo81]
[Shis5)]
[Sim85]
[SNW93]

[Sta89]
[Vog91]

[Wal88]

[Weig9]
746

E. Badouel and Ph. Darondeau. Structural operational specifications and trace automata. In Proc.
CONCUR’92, Stony Brook, NY, LNCS 630, pages 302-316. Springer-Verlag, Aungust 1992.

M. A. Bednarczyk. Categories of Asynchronous Systems. PhD thesis, Univ. Sussex, October 1987.
Available as CS R 1/88.

S. D. Brookes, C. A. R. Hoare, and A. W. Roscoe. A theory of communicating sequential processes.
Journal of the ACM, 31(3):560-599, July 1984.

B. Bloom, S. Istrail, and A. R. Meyer. Bisimulation can’t be traced: preliminary report. In Proc. 15th
ACM Symp. Principles of Programming Languages, San Diego, CA, pages 229-239, January 1988.

B. Bloom. Structural operational semantics for weak bisimulations. Theoretical Computer Science,
146:25-68, 1995.

P. R. D’Argenio, J. V. Echagiie, and L. Ramos. Priorities in a truly concurrent model (in spanish). In
Proc. XXIV Jornadas Argentinas de Informdtica e Investigacion Operativa, 1995.

J. V. Echagiie. Sémantique des Systémes Réactifs: Raffinement, Bistimulations et Sémantique Opéra-
tionnelle Structurée dans les Systémes de Transitions Asynchrones. These de Doctorat, [.N.P. de Greno-
ble, France, January 1993.

J. V. Echagiie, Z. Habbas, and S. Pinchinat. Structural Operational Semantics Specifications for True
Concurrency. In Proc. 15th International Conference of the Chilean Sociely in Information Science,
Chili, November 1995.

R.J. van Glabbeek. The refinement theorem for ST-bisimulation semantics. Research Report CS-R9002,
CWI, January 1990.

R. J. van Glabbeek. Full abstraction in structural operational semantics (extended abstract). In Proc.
AMAST 93, Enschede, NL, pages TT-84. Springer-Verlag, June 1993.

E. Goubault. The Geometry of Concurrency. These de Doctorat, Ecole Normale Supérieure, France,
December 1994.

J. F. Groote. Transition system specifications with negative premisses. Research Report CS-R8950,
CWI, December 1989.

J. F. Groote. Transition system specifications with negative premises. Theoretical Computer Science,
118(2):263-299, 1993.

R. J. van Glabbeek and I'. Vaandrager. Petri net models for algebraic theories of concurrency. In Proc.
PARLE’'87, vol. II: Parallel Languages, Eindhoven, LNCS 259, pages 224-242. Springer-Verlag, June
1987.

J. . Groote and F. Vaandrager. Structured operational semantics and bisimulation as a congruence
(extended abstract). In Proc. 16th ICALP, Stresa, LNCS 372, pages 423-438. Springer-Verlag, July
1989.

J. F. Groote and IF. W. Vaandrager. Structured operational semantics and bisimulation as a congruence.
Information and Computation, 100(2):202-260, October 1992.

R. Milner. A complete axiomatisation for observational congruence of finite-state behaviours. Informa-
tion and Computation, 81(2):227-247, 1989,

S. Pinchinat. Des Bisimulations pour la Sémantique des Systemes Reéactifs. These de Doctorat, I.N.P.
de Grenoble, France, January 1993.

G. D. Plotkin. A structural approach to operational semantics. Lect. Notes, Aarhus University, Aarhus,
DIS, 1981. ~

M. W. Shields. Deterministic asynchronous automata. In Formal Methods in Programming. North-
Holland, 1985.

R. De Simone. Higher-level synchronising devices in MEIJE-SCCS. Theoretical Computer Science,
37:245-267, 1985.

V. Sassone, M. Nielsen, and G. Winskel. A classification of models for concurrency. In Proc. CON-
CUR’93, Hildesheim, Germany, LNCS 715, pages 82-96. Springer-Verlag, August 1993.

E. W. Stark. Concurrent transition systems. Theoretical Computer Science, 64:221-269, 1989.

W. Vogler. Bisimulation and action refinement. In Proc. STACS'91. Hamburg, LNCS 480, pages
309-321. Springer-Verlag, February 1991.

D. J. Walker. Bisimulations and divergence. In Proc. 3rd IEEE Symp. Logic in Computer Science,
Edinburgh, July 1988,)

W. P. Weijland. Synchrony and Asynchrony in Process Algebra. PhD thesis, Univ. Amsterdam, June
1989.

APPENDIX
The following lemma present a characterization of ST (Gp)

Lemma 3 The set ST(Gp) is the least set D CTx x P(Ep) containing

o &t {f+2pf | feXAI eV € J(p) =ga, NS S YA £ 1€ T (ga, 00}

and s.t. f(t1, ..t + >, /»j(cz]i, . al) €D whenever

J
/S

o erists g such that for all j € J, p) = g”ﬁy

r,J ...7'/?‘

1

9o
o foralljeJ. f -1->

) VR A Te
o forallj#1¢€], gt " ogar”

o forallk =1 ..nt+3 ; @), €D where Jy def {j e Jf(t{, # €}

P s irreflexive iff for all f+ 35" ga, € Do [# g.
If P is irreflevive then for all f 4+ 5" 5 ga, € Do | J|< 1.

The following lemma show that patience rules sometimes propagate between cool combinators (in this
sense, between tame ones).

- . » . 7 .) P
Lemma 4 If f and g are cool, [---> g. [---> g and poo, with p = g2 g = gyttt then

pat™F

forall k st. gy # e orp#e. g --->.pat"* op and pat™* oo

Theorem 1 Let Gp be the ATS associated to a given irreflevive specification P and let Rp be the
greatest ST-bisimulation of Gp. Then for allty. ...ty uy,....uy € T and f € X7, af f 1s tame in P. then

Rp:i=st @ implies Rp : (1) =st f(70)

Proof e R to be the smallest subset of ST(Gp) x ST(Gp) x P(Ep x Ep) containing Rp and all the
trios

(SO + D ad). f(iD) +Z,/) A (@), ()i e T})
J

whenever

Ve =1, o (e +) aoue+ B (e b)) € Ji}) € Rp

where]k {] =]|a,1 #c}.

J - .
" and Vj, k. al, = ¢ <= b, = e, since both

Notice that for each trio exists g s.t. for all j € J. p/ = q,”,i
“5; and b{v are sub-terms of p/ at the same position k.

We claim that R is an ST-bisimulation on Gp. As a description of the proof techniques we have chosen
the less easy case for ST-bisimulation, namely the case 2a of Definition 3 where the process engages in a

new action concurrently with already ongoing ones :

Assume (f(f))+ a_j) ()45 5 0710 b_j {(pj(a]) oo bJ U €]} € R, and 'f)+ZJ/)j((17)+P(J) €
ST(Gp). By lemima 3 this state can be written f(t)+ > J(Yj” "(aJ)+ gl (d) where

747

)

o f 9o S and‘V’] (f -=->).

o VjeJ (¢ op),

o Vk.Vje Jy. (ar # €= (Li]p(lj\:).

Because fiscool,Vk =1...n. (ar # € = l(a}) # 7), then, for all a; # ¢ there exists t;ﬁ—ZJk a{.—l—ak €
ST(Gp) and by definition of Rp there exists a path

. oy
fk TOERT x Ty bk
wp '

s.t.
o Vi=1...my,j€ JA,(eZIb{_),
o uf+ Y s bl + by € ST(Gp), and
o (tv+2;, a‘{,‘ +ap,up, +), x’)i + by, {(al,, b]A)|J € JptU{(ar,br)}) € R.
As f is cool, there exists a patience rule pat™* for position k in f. We can construct a sequence of

events,

pat™ (e, .. eh, . e), pat™F e, el e), Lo pat™F (e, el e)

which can be applied to f(@) (and in general to any other term of the form f(...ug,...)). Concatenating
all such sequences for each k, we build a path starting in f(@) and end up f(u /) from which p(b) can be
executed. D

By lemma4 and the definition of Rp forallk = 1,....,n,forall j = 1, ..., my, pat™F (e, ..., € ey e)ngZ';'”n" (b7)

and g (b)]p(/ T (I)J) so the good candidate is

” +Z(/7, 0])J C’gl"'77"(5)

748

